Machine Reading: A "Killer App" for Statistical Relational AI

نویسندگان

  • Hoifung Poon
  • Pedro M. Domingos
چکیده

Machine reading aims to automatically extract knowledge from text. It is a long-standing goal of AI and holds the promise of revolutionizing Web search and other fields. In this paper, we analyze the core challenges of machine reading and show that statistical relational AI is particularly well suited to address these challenges. We then propose a unifying approach to machine reading in which statistical relational AI plays a central role. Finally, we demonstrate the promise of this approach by presenting OntoUSP, an end-toend machine reading system that builds on recent advances in statistical relational AI and greatly outperforms state-of-theart systems in a task of extracting knowledge from biomedical abstracts and answering questions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-based statistical relational learning

The relational structure is an important source of information, which is often ignored by the traditional statistical learning methods. Thus this thesis focuses on how to explicitly exploit such relational information in statistical learning tasks so as to build more effective and more robust models. The main methodology used in the thesis is derived from context-based modeling and analysis. Se...

متن کامل

Stochastic Relational Processes and Models

In order to solve real-world tasks, intelligent machines need to be able to act in noisy worlds where the number of objects and the number of relations among the objects varies from domain to domain. Algorithms that address this setting fall into the subfield of artificial intelligence known as statistical relational artificial intelligence (StaR-AI). While early artificial intelligence systems...

متن کامل

Relational Data Learning

The past decade has witnessed many new theories and applications for statistical machine learning. However, most of statistical machine learning techniques are developed for a predetermined situation; it is static and inflexible, has flat structure and only deals with attributes (random variables) without any concept of objects. To some extent, these limitations make it hard to apply these stat...

متن کامل

An evaluation of machine learning in algorithm selection for search problems

Machine learning is an established method of selecting algorithms to solve hard search problems. Despite this, to date no systematic comparison and evaluation of the different techniques has been performed and the performance of existing systems has not been critically compared with other approaches. We compare the performance of a large number of different machine learning techniques from diff...

متن کامل

Identifying Important Nodes in Heterogenous Networks

This is a position paper that presents a new approach to identifying important nodes or entities in a complex heterogeneous network. We provide a novel definition of an importance score based on a statistical model: An individual is important to the extent that including an individual explicitly in the model improves the data fit of the model more than it increases the model’s complexity. We ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010